<noframes id="vbtjx">
    <address id="vbtjx"><address id="vbtjx"><listing id="vbtjx"></listing></address></address>

      <sub id="vbtjx"></sub>

          <listing id="vbtjx"></listing><noframes id="vbtjx"><address id="vbtjx"></address>

          <address id="vbtjx"></address>
          上海代寫論文網專業提供代寫畢業論文、代寫本科論文服務
          您現在的位置:首頁 > 農業論文 > 農學論文 >
          近年來甘薯生物技術育種研究成果
          發布時間:2019-08-09

            摘要:甘薯是世界上重要的糧食作物。甘薯遺傳上的高度雜合性、種間種內雜交不親和性以及多倍性, 使甘薯常規育種面臨諸多挑戰。生物技術在改良甘薯品質、抗病性、抗逆性等方面具有很大應用潛力。概述了甘薯生物技術育種的研究現狀, 主要包括細胞工程、分子標記輔助育種、基因工程等。

            關鍵詞:甘薯; 細胞工程; 分子育種;

            作者簡介: 翟紅, 女, 教授, 博士, 主要從事甘薯遺傳育種研究。

          Progress in sweetpotato biotechnology

            Abstract:Sweetpotato is an important food crop in the world.This crop, a highly heterozygous, generally self-incompatible, outcrossing polyploidy, poses numerous challenges for the conventional breeding.Biotechnology has been shown to have the great potentialities for improving the nutritional quality and resistance to diseases and stresses in sweetpotato.The current situations of sweetpotato biotechnology including cell biotechnology, molecular marker-assisted breeding and gene engineering are reviewed in this paper.

            Keyword:sweetpotato; cell biotechnology; molecular breeding;

            甘薯是世界上第7大重要糧食作物, 同時也是飼料、工業原料、生物質能源作物[1].因此, 多用途、專用型已成為我國甘薯改良的主要目標。甘薯遺傳上的高度雜合性、雜交不親和性等使甘薯雜交育種面臨諸多挑戰。生物技術已經成為改良甘薯的重要途徑之一, 通過細胞工程、分子標記輔助選擇、發掘重要性狀基因、遺傳轉化等技術可望定向改良甘薯主要農藝性狀[2,3].因此, 通過生物技術育種與常規育種方法的有機結合, 可以加快甘薯的育種進程, 提高優良品種的育種效率。本文綜述了近年來甘薯生物技術育種的研究進展, 為甘薯的進一步開發利用奠定基礎。

            1、甘薯體細胞雜交

            甘薯組中存在嚴重的種間雜交不親和性, 使得甘薯近緣野生種的基因資源難以在甘薯育種中直接利用。研究表明, 體細胞雜交是克服種間雜交不親和性的有效途徑。目前, 我國研究者已獲得一些甘薯品種和近緣野生種的多個雜交不親和組合的體細胞雜種植株, 特別是育性正常、具有塊根的體細胞雜種植株[4].Yang等[3]獲得徐薯18與I.triloba的體細胞雜種植株, 并從中篩選出具有膨大塊根的抗旱雜種植株。Jia等[5]對本研究室獲得的髙系14號與I.triloba的體細胞雜種KT1抗旱性進行鑒定, 表明KT1的抗旱性顯著高于高系14號。RNA-Seq和qRT-PCR分析表明, KT1遺傳了其野生種親本I.triloba的干旱脅迫響應相關基因, 這些基因在干旱脅迫下顯著上調表達。表觀遺傳變異分析表明, KT1中高系14號特異的基因組條帶和甲基化位點比例顯著高于I.triloba.

            2、甘薯連鎖圖譜構建與QTL定位

            甘薯是同源六倍體作物, 遺傳背景復雜, 高度雜合, 染色體數目多達90條, 使甘薯的遺傳圖譜構建落后于水稻、小麥、玉米等主要作物。目前, 主要采用Grattapaglia等[6]提出的“雙假測交” (pseudo-testcross) 策略, 構建了甘薯的分子連鎖圖譜[7,8,9,10,11,12,13].已構建的甘薯分子連鎖圖譜列于表1中, 其中已報道的密度最高的甘薯分子連鎖圖譜是Zhao等[13]以甘薯品種徐薯18與徐781雜交獲得的F1代分離群體為作圖群體構建的, 所用標記包括AFLP和SSR, 兩親本均得到90個連鎖群, 徐薯18圖譜由1 936個AFLP標記和147個SSR標記組成, 總圖距為8 185cM, 標記間平均距離3.9cM;徐781圖譜由1 824個AFLP標記和130個SSR標記組成, 總圖距為8 152cM, 標記間平均距離4.2cM.

            甘薯的多數經濟性狀及農藝性狀均為數量性狀[14], 定位與這些性狀相關的QTL, 進而克隆相關的主效基因, 是用基因工程操作改良這些性狀的重要基礎。到目前為止, 已經定位了甘薯產量、淀粉含量、β胡蘿卜素含量等相關的QTL[15,16,17,18,19,20,21].

          表1 甘薯分子遺傳圖譜構建及QTL定位
          Tab.1 Linkage map construction and QTL mapping in sweetpotato

          甘薯分子遺傳圖譜構建及QTL定位

            a表示群體大小

            3、甘薯非生物脅迫抗性基因工程

            植物暴露于鹽、干旱、冷凍等非生物脅迫環境中會觸發許多共同的防御機制, 涉及到許多方面的變化, 如激活或者增加基因的表達、ABA含量的瞬時升高、可溶性糖和保護性蛋白質的積累、抗氧化劑水平的升高等[22].一些與脅迫相關的基因在提高甘薯對鹽、干旱、氧化等脅迫抗性方面具有一定的作用。

            Gao等[23,24]分別將擬南芥AtLOS5和AtSOS基因導入甘薯品種栗子香和徐薯18中, 獲得了耐鹽性顯著提高的轉基因甘薯新材料。Park等[25]從甘薯中克隆了LEA14基因, 發現過表達該基因顯著提高甘薯愈傷組織的耐鹽性。王欣等[26]將Cu/Zn SOD和APX基因導入甘薯, 提高了轉基因甘薯的耐鹽性。Fan等[27]將菠菜的SoBADH基因導入甘薯中, 提高了轉基因甘薯植株對鹽脅迫、氧化脅迫及低溫等脅迫的抗性。Kim等[28,29]利用RNAi技術分別使甘薯愈傷組織中的IbCHY-β和IbLCY-ε基因下調表達, 轉基因甘薯愈傷組織的β胡蘿卜素含量和耐鹽性顯著提高。Ruan等[30]將擬南芥HDG11基因導入甘薯, 增強了轉基因甘薯植株的抗旱性。Wang等[31,32,33,34,35,36]分別從甘薯耐鹽株系ND98中克隆了IbNFU1、IbP5CR、IbMas、IbSIMT1和IbNHX2基因, 在鹽、干旱等脅迫下, 這些基因的過表達顯著增強了轉基因甘薯植株的耐鹽性。同野生型對照植株相比, 過表達IbNHX2基因甘薯植株抗旱性顯著提高。Zhai等[37]將克隆的IbMIPS1基因導入甘薯, 在鹽、旱脅迫下, 該基因的過表達顯著上調肌醇生物合成、磷脂酰肌醇 (PI) 信號途徑、ABA信號途徑、脅迫響應等相關基因的表達, 轉基因甘薯植株的耐鹽性和抗旱性顯著提高。Kim等[38]從甘薯中克隆得到IbOr基因, 發現過表達該基因的甘薯愈傷組織的β胡蘿卜素、葉黃素和總類胡蘿卜素含量提高, 抗氧化酶活性增強, 耐鹽性提高。Wang等[39]利用RNAi技術使甘薯IbDFR基因下調表達, 使得轉基因甘薯的花青素積累降低而減弱了抗氧化能力。轉入IbMYB1基因的高胡蘿卜素甘薯品種的抗氧化能力得到明顯提高[40].

            4、甘薯抗病蟲基因工程

            甘薯的病蟲害嚴重制約著其生產, 提高抗病性是甘薯育種的重要目標之一。基因工程技術為培育高產、優質、多抗和適應性強的甘薯新品種提供了新思路和新途徑。

            Muramoto等[41]將大麥αHT基因導入甘薯, 黑腐病病原真菌C.fimbriata侵染后, 同野生型對照植株相比, 轉基因植株的抗性明顯提高。Gao等[42,43]將水稻OCI基因導入甘薯, 顯著提高了轉基因甘薯對莖線蟲病抗性。Zhai等[37]研究發現, 過表達IbMIPS1基因的甘薯植株通過系統上調抗性相關基因、增減抗性相關物質的含量等顯著增強了對莖線蟲病的抗性。表達水稻OCI基因的甘薯提高了對SPFMV病毒侵染的抗性[44].Okada等[45]將CP基因導入甘薯, SPFMV-S病毒侵染后, 轉基因植株的抗性明顯增強。Sivparsad等[46]將SPFMV、SPCSV、SPVG和SPMMV病毒外殼蛋白基因片段導入甘薯, 提高了轉基因甘薯對多種病毒的抗性。過表達IbNAC1的甘薯植株增強了儲藏蛋白基因的表達, 提高了胰蛋白酶抑制劑活性, 增強了對食草昆蟲的抗性[47].Li等[48]獲得了過表達和RNAi干擾IbpreproHypSys基因表達的甘薯, 增強了轉基因甘薯的抗蟲性。

            5、甘薯品質改良基因工程

            Kimura等[49]將IbGBSSI基因在甘薯中過表達后得到了一個幾乎檢測不到直鏈淀粉含量的株系, 表明基因工程可以改變淀粉的組成。RNAi干擾技術也能夠改變甘薯直鏈淀粉的含量[50].Santa-Maria等[51]發現, 表達嗜熱α淀粉酶基因甘薯塊根中淀粉在高溫 (80℃) 條件下容易水解。RNAi干擾IbSBEⅡ基因的表達能夠提高甘薯直鏈淀粉的含量[52].Wang等[53]克隆了IbAATP基因, 將其轉入甘薯, 發現IbAATP基因能夠顯著提高轉基因甘薯植株的淀粉合成能力, 并通過影響淀粉合成相關基因的表達而改變淀粉含量、組成及特性。轉基因甘薯中, SBD2基因的表達影響淀粉顆粒形態而未改變淀粉分子的結構組成[54].Tanaka等[55]分離了甘薯SRF1基因, 過表達SRF1基因的甘薯植株的塊根干物質含量、淀粉含量高于野生型對照植株, 而葡萄糖和果糖含量明顯較少。Wang等[56]發現表達玉米Lc基因的甘薯塊根生長過程中, 與野生型對照植株相比, 木質化程度增強, 而產量和淀粉積累減少。此外, 表達煙草NtFAD3基因的甘薯植株中亞麻酸含量高于野生型對照[57].Noh等[58]發現, IbEXP1基因通過抑制后生木質部和形成層細胞的增殖而抑制甘薯塊根的生長。

            Kim等[28]發現, 下調CHY-β基因的表達增加了轉基因甘薯培養細胞的β胡蘿卜素和總類胡蘿卜素含量。LCY-ε基因的下調表達也能夠增加轉基因甘薯愈傷組織的類胡蘿卜素合成[29].IbOr基因的過表達提高了紫色甘薯中類胡蘿卜素水平[59].Park等[40]將IbMYB1基因導入橙色甘薯, 提高了轉基因甘薯的花青素水平。IbDFR基因的下調減少了轉基因甘薯花青素的積累。

            6、展望

            生物技術育種是甘薯育種研究領域的熱點之一, 具有廣泛的應用前景。目前, 國內外研究者在甘薯分子連鎖圖譜的構建、性狀相關基因的定位及克隆等方面已取得較大的進展, 為甘薯分子標記輔助育種奠定了一定的基礎。然而, 常規育種方法仍然是今后育種的主要研究方向。隨著甘薯近緣野生種以及栽培品種基因組測序的完成, 運用各種分子技術挖掘甘薯重要性狀的基因, 將分子技術育種與常規育種技術相結合將極大地促進甘薯育種的發展。

            參考文獻

            [1]Liu Q C.Sweetpotato omics and biotechnology in China[J].Plant Omics J, 2011, 4 (6) :295.
            [2]柳哲勝, 劉慶昌, 翟紅, 等。用改進的SSAP方法克隆抗甘薯莖線蟲病相關的RGA[J].分子植物育種, 2005, 3 (3) :369.
            [3]Yang Y F, Guan S K, Zhai H, et al.Development and evaluation of a storage root-bearing sweetpotato somatic hybrid between Ipomoea batatas (L.) Lam.and I.triloba L.[J].Plant Cell Tissue Organ Cult, 2009, 99 (1) :83.
            [4]Guo J M, Liu Q C, Zhai H, et al.Regeneration of plants fromIpomoea cairica L.protoplasts and production of somatic hybrids between I.cairica L.and sweetpotato, I.batatas (L.) Lam.[J].Plant Cell Tissue Organ Cult, 2006, 87 (3) :321.
            [5]Jia L C, Zhai H, He S Z, et al.Analysis of drought tolerance and genetic and epigenetic variations in a somatic hybrid between Ipomoea batatas (L.) Lam.and I.triloba L.[J].J Integr Agric, 2017, 16 (1) :36.
            [6]Grattapaglia D, Sederoff R.Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using apseudo-testcross:mapping strategy and RAPD markers[J].Genetics, 1994, 137 (4) :1121.
            [7]Ukoskit K, Thompson P G.Autopolyploidy versus allopolyploidy and low-density randomly amplified polymorphic DNA linkage maps of sweetpotato[J].J Amer Society Horti Sci, 1997, 122 (6) :822.
            [8]Kriegner A, Cervantes J C, Burg K, et al.A genetic linkage map of sweetpotato[Ipomoea batatas (L.) Lam.]based on AFLP markers[J].Mol Breed, 2003, 11 (3) :169.
            [9]Cervantes-Flores J C, Yencho G C, Kriegner A, et al.Development of a genetic linkage map and identification of homologous linkage groups in sweetpotato using multiple-dose AFLP markers[J].Mol Breed, 2008, 21 (4) :511.
            [10]蒲志剛, 王大一, 譚文芳, 等。利用AFLP構建甘薯連鎖圖及淀粉含量QTL定位[J].西南農業學報, 2010, 23 (4) :1047.
            [11]唐茜, 何鳳發, 王季春, 等。甘薯SRAP遺傳圖譜構建及淀粉含量QTL初步定位[J].西南大學學報 (自然科學版) , 2010, 32 (6) :40.
            [12]李愛賢, 劉慶昌, 王慶美, 等。利用SRAP標記構建甘薯分子連鎖圖譜[J].作物學報, 2010, 36 (8) :1286.
            [13]Zhao N, Yu X X, Jie Q, et al.A genetic linkage map based on AFLP and SSR markers and mapping of QTL for dry-matter content in sweetpotato[J].Mol Breed, 2013, 32 (4) :807.
            [14]Cervantes-Flores J C, Yencho G C, Davis E L.Host reactions of sweetpotato genotypes to root-knot nematodes and variation in virulence of Meloidogyne incognita populations[J].HortScience, 2002, 37 (7) :1112.
            [15]吳潔, 譚文芳, 何俊蓉, 等。甘薯SRAP連鎖圖構建淀粉含量QTL檢測[J].分子植物育種, 2005, 3 (6) :841.
            [16]Chang K Y, Lo H F, Lai Y C, et al.Identification of quantitative trait loci associated with yield-related traits in sweet potato (Ipomoea batatas) [J].Bot Stud, 2009, 50 (1) :43.
            [17]李愛賢, 劉慶昌, 王慶美, 等。甘薯淀粉含量的QTL定位[J].分子植物育種, 2010, 8 (3) :516.
            [18]李愛賢, 申春云, 王慶美, 等。甘薯β-胡蘿卜素含量的QTL定位[J].分子植物育種, 2014, 12 (2) :270.
            [19]Cervantes-Flores J C, Sosinski B, Pecota K V, et al.Identification of quantitative trait loci for dry-matter, starch, andβ-carotene content in sweetpotato[J].Mol Breed, 2011, 28 (2) :201.
            [20]Li H, Zhao N, Yu X X, et al.Identification of QTLs for storage root yield in sweetpotato[J].Sci Hortic, 2014, 170:182.
            [21]唐道彬, 張凱, 呂長文, 等。基于EST-SSR標記甘薯連鎖圖譜構建及淀粉性狀的QTL定位[J].中國農業科學, 2016, 49 (23) :4488.
            [22]Zhang H, Han B, Wang T, et al.Mechanisms of plant salt response:insights from proteomics[J].J Proteome Res, 2012, 11 (1) :49.
            [23]Gao S, Yuan L, Zhai H, et al.Transgenic sweetpotato plants expressing an LOS5gene are tolerant to salt stress[J].Plant Cell Tissue Organ Cult, 2011, 107 (2) :205.
            [24]Gao S, Yuan L, Zhai H, et al.Overexpression of SOSgenes enhanced salt tolerance in sweetpotato[J].J Integr Agric, 2012, 11 (3) :378.
            [25]Park S C, Kim Y H, Jeong J C, et al.Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic-and salt stress-tolerance of transgenic calli[J].Planta, 2011, 233 (3) :621.
            [26]王欣, 過曉明, 李強, 等。轉逆境誘導型啟動子SWPA2驅動Cu/Zn SOD和APX基因甘薯 (Ipomoea batatas (L.) Lam.) 耐鹽性[J].分子植物育種, 2011, 9 (6) :754.
            [27]Fan W J, Zhang M, Zhang H X, et al.Improved tolerance to various abiotic stresses in transgenic sweetpotato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase[J].PLoS ONE, 2012, 7 (5) :e37344.
            [28]Kim S H, Ahn Y O, Ahn M J, et al.Down-regulation of beta-carotene hydroxylase increases beta-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato[J].Phytochemistry, 2012, 74:69.
            [29]Kim S H, Ahn Y O, Ahn M J, et al.Downregulation of the lycopeneε-cyclase gene increases carotenoid synthesis via theβ-branch-specific pathway and enhances salt-stress tolerance in sweetpotato transgenic calli[J].Physiol Plant, 2013, 147 (4) :432.
            [30]Ruan L, Chen L J, Chen Y H, et al.Expression of Arabidopsis HOMEODOMAIN GLABROUS 11enhances tolerance to drought stress in transgenic sweetpotato plants[J].Plant Bio J, 2012, 55 (2) :151.
            [31]Wang L J, He S Z, Zhai H, et al.Molecular cloning and functional characterization of a salt tolerance-associated gene IbNFU1from sweetpotato[J].J Integr Agric, 2013, 12 (1) :27.
            [32]Liu D G, He S Z, Zhai H, et al.Overexpression of IbP5CRenhances salt tolerance in transgenic sweetpotato[J].Plant Cell Tissue Organ Cult, 2014, 117 (1) :1.
            [33]Liu D G, Wang L J, Liu C L, et al.An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance[J].PLoS ONE, 2014, 9 (4) :e93935.
            [34]Liu D G, Wang L J, Zhai H, et al.A novelα/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato[J].PLoS ONE, 2014, 9 (12) :e115128.
            [35]Liu D G, He S Z, Song X J, et al.IbSIMT1, a novel salt-induced methyltransferase gene fromIpomoea batatas, is involved in salt tolerance[J].Plant Cell Tissue Organ Cult, 2015, 120 (2) :701.
            [36]Wang B, Zhai H, He S Z, et al.A vacuolar Na+/H+antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato[J].Sci Hortic, 2016, 201:153.
            [37]Zhai H, Wang F B, Si Z Z, et al.A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweetpotato[J].Plant Biotech J, 2016, 14 (2) :592.
            [38]Kim S H, Ahn Y O, Ahn M J, et al.Cloning and characterization of an orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures[J].Plant Physiol Biochem, 2013, 70:445.
            [39]Wang H X, Fan W J, Li H, et al.Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweetpotato underlies the direct evidence of anthocyanins function against abiotic stresses[J].PLoS ONE, 2013, 8 (11) :e78484.
            [40]Park S C, Kim Y H, Kim S H, et al.Overexpression of the IbMYB1gene in an orange-fleshed sweetpotato cultivar produces a dual-pigmented transgenic sweetpotato with improved antioxidant activity[J].Physiol Plant, 2015, 153 (4) :525.
            [41]Muramoto N, Tanaka T, Shimamura T, et al.Transgenic sweetpotato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriatain leaves and storage roots[J].Plant Cell Rep, 2012, 31 (6) :987.
            [42]Gao S, Yu B, Yuan L, et al.Production of transgenic sweetpotato plants resistant to stem nematodes using oryzacystatin-Ⅰgene[J].Sci Hortic, 2011, 128 (4) :408.
            [43]Gao S, Yu B, Zhai H, et al.Enhanced stem nematode resistance of transgenic sweetpotato plants expressing oryzacystatin-Ⅰgene[J].Agric Sci China, 2011, 10 (4) :519.
            [44]Cipriani G, Fuentes S, Bello V, et al.Transgene expression of rice cysteine proteinase inhibitors for the development of resistance against sweetpotato feathery mottle virus[R]//CIP Program Report.Lima:CIP, 1999-2000:267.
            [45]Okada Y, Saito A, Nishiguchi M, et al.Virus resistance in transgenic sweetpotato[Ipomoea batatas L. (Lam.) ]expressing the coat protein gene of sweetpotato feathery mottle virus[J].Theor Appl Genet, 2001, 103 (5) :743.
            [46]Sivparsad B J, Gubba A.Development of transgenic sweetpotato with multiple virus resistance in South Africa (SA) [J].Transgenic Res, 2014, 23 (2) :377.
            [47]Chen S P, Lin I W, Chen X Y, et al.Sweetpotato NAC transcription factor, IbNAC1, upregulates sporamin gene expression by binding the SWRE motif against mechanical wounding and herbivore attack[J].Plant J, 2016, 86 (3) :234.
            [48]Li Y C, Wan W L, Lin J S, et al.Signal transduction and regulation of IbpreproHypSys in sweetpotato[J].Plant Cell Environ, 2016, 39:1576.
            [49]Kimura T, Otani M, Noda T, et al.Absence of amylose in sweet potato[Ipomoea batatas (L.) Lam.]following the introduction of granule-bound starch synthaseⅠcDNA[J].Plant Cell Rep, 2001, 20 (7) :663.
            [50]Otani M, Hamada T, Katayama K, et al.Inhibition of the gene expression for granule-bound starch synthaseⅠby RNA interference in sweetpotato plants[J].Plant Cell Rep, 2007, 26 (10) :1801.
            [51]Santa-Maria M C, Yencho C G, Haigler C H, et al.Starch self-processing in transgenic sweetpotato roots expressing a hyperthermophilic alpha-amylase[J].Biotechnol Progress, 2011, 27 (2) :351.
            [52]Shimada T, Otani M, Hamada T, et al.Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzymeⅡgene (IbSBEⅡ) [J].Plant Biotechnol, 2006, 23 (1) :85.
            [53]Wanf Y N, LI Y, Zhang H, et al.A plastidic ATP/ADP transporter gene, IbAATP, increases starch and amylose contents and alters starch structure in transgenic sweetpotato[J].J Integr Agric, 2016, 15 (9) :1968.
            [54]Zhang Y F, Ji Q, Xing Y J, et al.Expression of an engineered tandem-repeat starch-binding domain in sweetpotato plants[J].Afri J Biotechnol, 2013, 12 (41) :5994.
            [55]Tanaka M, Takahata Y, Nakayama H, et al.Altered carbohydrate metabolism in the storage roots of sweet potato plants overexpressing the SRF1gene, which encodes a Dof zinc finger transcription factor[J].Planta, 2009, 230 (4) :737.
            [56]Wang H X, Yang J, Zhang M, et al.Altered phenylpropanoid metabolism in the maize Lc-expressed sweetpotato (Ipomoea batatas) affects storage root development[J].Sci Rep, 2016, 6:18645.
            [57]Wakita Y, Otani M, Hamada T, et al.A tobacco microsomalω-3fatty acid desaturase gene increases the linolenic acid content in transgenic sweetpotato (Ipomoea batatas) [J].Plant Cell Rep, 2001, 20 (3) :244.
            [58]Noh S A, Lee H S, Kim Y S, et al.Down-regulation of the IbEXP1gene enhanced storage root development in sweetpotato[J].J Exp Bot, 2013, 64 (1) :129.
            [59]Park S C, Kim S H, Park S, et al.Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar[J].Plant Physiol Biochem, 2015, 86:82.

          對應分類:
          版權所有:上海論文網專業權威的論文代寫、論文發表的網站,秉承信譽至上、用戶為首的服務理念,服務好每一位客戶
          本站部分論文收集于網絡,如有不慎侵犯您的權益,請您及時致電或寫信告知,我們將第一時間處理,郵箱:shlunwen@163.com
          天天赢彩票天天赢彩票官网天天赢彩票平台天天赢彩票app天天赢彩票邀请码天天赢彩票娱乐天天赢彩票快3天天赢彩票时时彩天天赢彩票走势图天天赢彩票ios